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Abstract

Bulk metallic glasses are materials that require only modest cooling rates to obtain amorphous
solids directly from the melt.  Nd60Fe30Al10 has been reported to be a ferromagnetic bulk metallic
glass that exhibits high coercivity, a combination unlike conventional Nd-based amorphous
magnetic alloys.  To clarify the relationship between short-range order and high coercivity in
glassy Nd60Fe30Al10, experiments were performed to verify the existence of a homogeneous
liquid state prior to rapid solidification.  Alloys were prepared by various pre-alloying routes and
then melt-spun.  Arc-melted alloys were prepared for melt spinning using three different
protocols involving: 1) alloying all three elements at once, 2) forming a Nd-Fe alloy which was
subsequently alloyed with Al, and 3) forming a Fe-Al alloy for subsequent alloying with Nd.
XRD, DTA, and magnetic measurement data from the resultant ribbons indicate significant
differences in both the glassy fraction and the crystalline phase present in the as-spun material.
These observed differences are attributed to the presence of highly stable nanoscopic aluminide-
and/or silicide-phases, or motes, present in the melt prior to solidification.  These motes would
affect the short-range order and coercivity of the resultant glassy state and are anticipated to
provide heterogeneous nucleation sites for crystallization.

Introduction

Bulk metallic glasses constitute a unique family of metal alloys that requires only a modest
cooling rate, 1-100 K/s, to form an amorphous solid from the melt.  The lack of long-range order
and grain boundaries in bulk metallic glass alloys enables them to exhibit superplasticity and
enhanced corrosion resistance, conferring great technological potential.  Recent reports[1] claim
that Nd60Fe30Al10 is a ferromagnetic bulk metallic glass that is amorphous and yet exhibits a high
magnetic coercivity, on the order of 277 kA/m.  This behavior is in contradiction to that found in
well-understood conventional Nd-based amorphous magnetic alloys.[2]  In conventional alloys,
especially Nd2Fe14B, an amorphous microstructure yields soft magnetic characteristics with
negligible coercivity. [3]  Coercivity does not develop in the Nd2Fe14B alloys unless the material



contains a significant fraction of the crystalline phase, easily detected by x-ray diffraction
(XRD).  The high coercivity arises from impediments to domain wall motion, caused by grain
boundaries or other defects.  The origin of impediments to domain wall motion is unclear in bulk
amorphous magnetic alloys with high coercivities.  One hypothesis is that clusters of differing
local composition with disparate magnetic properties exist in the bulk amorphous alloy and
confer coercivity.  To clarify the relationship between potential existence of short-range order
and coercivity in these alloys, investigations of the glass formability, magnetic character, and
thermal stability were made in a series of melt-spun ribbons based on the composition
Nd60Fe30Al10.  It is expected that the solidification route, microstructure, and composition of
melt-spun ribbons of this composition are more homogeneous than those of their bulk analog.
Understanding obtained from studies on melt-spun ribbons will later be applied to studies on
bulk cast forms of the material.

Procedure

The composition chosen for investigation was based on published experiments to identify the
best glass-forming composition in the Nd-Fe-Al system.[4]  Samples of the composition
Nd60Fe30Al10 were made using three different routes.  Three different pre-alloyed starting charges
were prepared by arc-melting the constituent high-purity elements under an atmosphere of 0.7
bar high purity Ar in different sequences: Fe and Al were combined and Nd alloyed in later, Nd
and Fe were combined and Al added later, and all three elements were pre-alloyed
simultaneously.  These three pre-alloying conditions are referred to as (Fe,Al)+Nd, (Nd,Fe)+Al,
and (Nd,Fe,Al), respectively.  Each arc-melted sample was subsequently induction melted in a
quartz crucible to 1000°C and then melt-spun on a copper wheel spinning with a tangential
surface speed of 25 m/s, in 1/3 atmosphere of helium.[5]  The side of the resultant melt-spun
ribbon in contact with the wheel is the “wheel side," while the other side of the ribbon is the
“free side.”  XRD, differential thermal analysis (DTA), and magnetic measurements were
performed on each sample.  The XRD was performed on both ground ribbon samples and on the
free side of melt-spun ribbons using a Philips diffractometer and Cu-Kα radiation.  The DTA on
each sample was performed from room temperature to 1000°C at a heating rate of 20°C per
minute in Ar flowing at 100 cc/min using a Perkin Elmer DTA7.  For DTA, the ribbon pieces
were placed in an Al2O3 crucible and covered with dehydrated MgO powder to enhance thermal
contact and to minimize reaction with the Al2O3 crucible, which produced a strong exothermic
reaction with the melt-spun ribbons immediately following melting.  Magnetic measurements
were performed with a Quantum Design MPMS SQUID magnetometer at T=300 K from 5 Tesla
(4 MA/m) to -5 Tesla (-4 MA/m), using multiple ribbon pieces measured parallel to the applied
field.

Results

Data derived from XRD, DTA, and magnetic measurements indicate that the resultant melt-spun
ribbons exhibit significant differences in microstructure and phase constitution.

I. XRD
The differences between the XRD patterns in Figures 1 and 2 indicate that pre-alloying order
does affect the phases present in the melt-spun ribbons.  XRD patterns for ground ribbons (Fig.
1) show minor differences among the microstructures of the ribbons produced from the three
different pre-alloyed conditions.  Both the samples of (Fe,Al)+Nd and (Nd,Fe)+Al have some
long-rang crystallographic order as evidenced by low-intensity broad peaks that occur in an
amorphous background.  The (Nd,Fe,Al) pattern appears to be almost completely amorphous.



The XRD patterns obtained from the free side of the melt-spun ribbons also show clear
differences between the samples (Fig. 2).  If nucleation from the melt occurs, the thermal
gradient across the thickness of the ribbon during melt spinning is sufficient for grain growth,
resulting in microstructural and phase differences through the thickness of the ribbon.[5]

Therefore XRD of the free side surface of the ribbons is a more rigorous test for the presence of
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Figure 1: Comparison of effect of pre-alloying conditions on XRD patterns of the ground melt-
spun ribbons for 3 different Nd60Fe30Al10 pre-alloys.
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nucleated phases and better displays the intersample differences arising from the different pre-
alloying conditions.  All three samples have a broad amorphous-type peak located around 2Θ =
31º that indicates the sample is largely amorphous.  The (Fe,Al)+Nd sample appears to have the
largest crystalline fraction of the three samples, with a very strong peak centered at 2Θ = 30º, as
well as several smaller, broad XRD peaks.  The (Nd,Fe,Al) sample exhibits evidence of the
presence of nanocrystalline material characterized by weak Bragg reflections centered near the
amorphous peak.  The (Nd,Fe)+Al sample exhibits no obvious crystalline Bragg peaks under our
measurement conditions.  The differences between Figures 1 and 2 can be explained if the
nucleated phases apparent in Figure 2 are essentially near-surface features that represent a small
fraction of the bulk of the material.

II. DTA
While all three samples show DTA exothermic signals with onset temperatures around 460°C,
there are substantial differences in the character of the decompositions (Fig. 3).

The (Nd,Fe)+Al sample has the largest crystallization peak area.  As the crystallization peak area
is proportional to the crystallization energy times the volume fraction, the largest peak area
should represent the largest fraction of amorphous material of the three samples (Table 1).  The
(Nd,Fe,Al) sample has the next largest crystallization peak area, and the (Fe,Al)+Nd sample has
the smallest crystallization peak area.  These results correspond closely to those obtained from

Figure 3: Comparison of effect of pre-alloying conditions on DTA performed on melt-spun
ribbons for 3 different Nd60Fe30Al10 pre-alloys.
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the XRD data.  Both of the two-step pre-alloyed samples have very similar endothermic events,
with onsets occurring between 657 and 659°C.  The one-step pre-alloy sample, (Fe,Al,Nd), has
two endothermic signals, one with an onset temperature at 610°C and the second with an onset
temperature of 651°C.  The single endotherms that occur near 660°C are attributed to
crystallization of the glass to the known equilibrium phase composition.[6]  The double
endotherm in the (Nd,Fe,Al) sample is inconsistent with the equilibrium phase distribution at this
composition.  As there are no crystalline phases in the equilibrium phase diagram near the
composition of the glass, the presence of a significant crystalline fraction must result in a change
in the composition of the remaining glassy fraction.  If the crystalline fraction identity does not
correspond to the equilibrium phase for this composition, the composition of the glass may be
shifted into a different phase field in the ternary equilibrium phase diagram and result in a
different final phase assemblage or different reaction pathway for this composition.  In all three
samples a minor DTA anomaly at 845°C indicates the liquidus temperature, which is in
reasonable agreement with the reported equilibrium value of near 800°C.[6]

III. Magnetization Measurements
The room temperature magnetization data also show significant differences in the samples of the
three pre-alloying conditions (Fig. 4).  The (Nd,Fe)+Al sample has the highest remanence and
coercivity of the three samples, followed closely by (Fe,Al)+Nd and with (Nd,Fe,Al) having the
smallest values.  Typically, Nd-based amorphous magnetic alloys show soft magnetic
characteristics, with little remanence or coercivity.  None of the samples prepared here are
particularly soft, but the low remanence and coercivity of the (Nd,Fe,Al) sample makes it the
softest, and most likely most homogeneous, sample of the three. The magnetization values at
high field also vary between the samples.  The differences in the magnetic data can be accounted
for by the presence of anti-ferromagnetic phases or ferromagnetic phases with ordering below
room temperature present in different amounts in each of the samples.

Sample XRD Bragg peak DTA Magnetization
Appearance Crystallization Peak Area, J/g Hc, kA/m M at 5T, kA/m MR, kA/m

(Nd,Fe)+Al Broad peak at
d=2.88

-23.3 25.1 16.97 3.41

(Fe,Al)+Nd Stronger peaks at
d=2.98, 2.83, 1.83,

1.55, 1.47

-20.1 21.6 15.61 2.70

(Nd,Fe,Al) Sharpening of broad
peak at d=2.88, 2.83

-21.7 3.49 13.50 0.84

Table 1: Summary of experimental findings.

IV. Discussion
From the differences observed in the XRD, DTA, and magnetic measurement data, it is clear that
the phase composition of the melt-spun material is dependent on the order in which the
constituents are alloyed.  This conclusion can only be true if a homogeneous liquid state is not
obtained prior to solidification.  As each of the binary phase diagrams of these elements shows
the presence of refractory phases, there is a distinct possibility that non-equilibrium refractory
phases may be formed during the initial alloy preparation.  These phases can be slow to dissolve
into the melt during subsequent melting.  By pre-alloying the constituent elements, i.e., by arc-



melting Nd and Fe then adding Al, or by arc-melting Fe and Al and then adding Nd, it is possible
to control the reaction sequence and possibly avoid the formation of any refractory phases.
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Figure 4: Effect of pre-alloying condition on magnetization measurement.  a.) Magnified view of
                second-quadrant demagnetization curve showing remanence and coercivity.  b.) Full

magnetization curves to 5T (4 MA/m) applied field.



When the three elements are arc-melted together without any pre-alloying, as in (Nd,Fe,Al), the
local conditions may be significantly different from those of the pre-alloyed case. Since Al is the
lowest melting-point element of the three constituents, as the temperature is raised molten Al
surrounds the solid Nd and Fe.  Since diffusion in the liquid is much more rapid than diffusion in
the solid, the phases formed between Nd and Al are approached from the Al-rich side during arc
melting.  Thus the initial conditions are favorable for the formation of NdAl2, which, with a
melting point of 1460°C, is the most refractory phase in the Nd-Al system. For arc-melted
samples, the inability to produce homogeneous samples in systems which display wide variations
in melting points is in no sense unique to Nd-Fe-Al but rather is a well known shortcoming of
the technique.  Even though the ratio of Nd and Al in Nd60Fe30Al10 is near the Nd-Al eutectic,
the superheat temperature attained during the induction melting prior to melt spinning may still
be insufficient to homogenize the sample, and it is likely that some of the NdAl2 would remain
as nanoscopic motes in the melt, acting as nucleation sites.

In the Fe-Al binary pre-alloy charge, the Fe:Al composition should form the stable α−Fe phase
for T > 855°C.  This Fe:Al ratio in Nd60Fe30Al10 is approached from the Al-rich side, where only
lower-melting phases occur.  These phases include FeAl3 and Fe2Al5, with 1160ºC < Tmelt <
1170ºC.  Since the temperature reached during induction melting prior to melt spinning is below
these temperatures, it is possible that these phases, if present, do not fully dissolve in the melt
before solidification.  For the Nd-Fe binary pre-alloyed charge, the phases formed are
approached from the Nd-rich side.  The Nd:Fe composition used for the pre-alloyed charges
possesses a liquidus at about 820°C.  The most probable crystalline phase formed at this Nd:Fe
compositional ratio is the Fe17Nd2 phase, but it is less likely that any refractory phases form
between Nd and Fe compared to the (Al,Nd,Fe) and (Al,Fe)+Nd binary pre-alloyed charges.

In all cases, the arc-melted samples are expected to be fully crystalline and multi-phase.  The
weight fraction of residual refractory phase should be well below the limit of detectability for x-
ray diffraction and thus no attempt was made to identify the phases in the arc-melted buttons.
While it seems likely that refractory binary phases would form in the pre-alloyed charges, there
are no detectable binary phases present in the XRD data for the melt spun (Nd,Fe,Al) or the
(Nd,Fe)+Al samples.  Additionally, the strong peaks evident in the (Fe,Al)+Nd pattern do not
correspond to any single Fe-Al binary compound diffraction pattern.  However, there may be
some correlation between these peaks and the presence of some aluminide phases or ternary
phases.  Additional phase analysis is underway.

Other sources for motes that may act as nucleation sites may be silicides.  The quartz crucibles
used to induction melt the alloys prior to melt spinning impart some silicon to the samples during
induction melting.  Inductively Couple Plasma Atomic Emission Spectroscopy, ICP-AES, has
shown the level of Si incorporation varies with temperature.  Although the contamination is low
(< 2.5 at. %), the Si readily forms very refractory phases with Nd, Fe, and Al, any of which could
provide nucleation sites for crystalline phases.  However, the presence of these phases is not
expected to be dependent on the alloying route.

The sub-solidus region of the ternary phase diagram at the composition Nd60Fe30Al10 lies in a
two-phase region between Nd and Nd6Fe13-xAl1+x (0.6 < x < 4). This condition suggests the



possibility of formation of nanoscopic clusters of locally varying composition, some
hypothesized to be rich in Nd and others rich in Fe, relative to the average composition.  The
composition of these local nanoclusters would be influenced by any pre-existing crystallinity that
forces the composition of the remaining glass out of the two-phase region.  It is speculated that
the presence of such ferromagnetic clusters could account for the differences in coercivity and
remanence seen in the samples of this study.

Conclusions

From the data presented here, it can be seen that the pre-alloying sequence prior to melt spinning
of the ferromagnetic bulk metallic glass composition Nd60Fe30Al10 results in differing phase
assemblages and microstructures.  Pre-alloying Nd and Fe before adding Al results in a nearly-
homogeneous amorphous alloy after melt spinning as determined by XRD and DTA.  Pre-
alloying of Fe and Al before adding Nd results in a mixture of crystalline and amorphous phases,
while the fraction of glassy phase obtained from pre-alloying all three metals at once was
intermediate to that of the other samples.  It is concluded that differences in the microstructures
and phase constitutions of the resultant melt-spun materials would only occur if a homogeneous
liquid is not attained prior to melt spinning.
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